|
4180 |
P1000C Covered Points Count
|
0 / 0 |
提高+/省选- |
|
4179 |
P1000D Yet Another Problem On a Subsequence
|
0 / 0 |
省选/NOI- |
|
4178 |
P1000E We Need More Bosses
|
0 / 0 |
NOI/NOI+/CTSC |
|
4177 |
P1000F One Occurrence
|
0 / 0 |
9 |
|
4176 |
P1000G Two-Paths
|
0 / 0 |
10 |
|
4175 |
P1001A Generate plus state or minus state
|
0 / 0 |
普及/提高- |
|
4174 |
P1001B Generate Bell state
|
0 / 0 |
普及+/提高 |
|
4173 |
P1001C Generate GHZ state
|
0 / 0 |
普及+/提高 |
|
4172 |
P1001D Distinguish plus state and minus state
|
0 / 0 |
普及+/提高 |
|
4171 |
P1001E Distinguish Bell states
|
0 / 0 |
提高+/省选- |
|
4170 |
P1001F Distinguish multi-qubit basis states
|
0 / 0 |
普及+/提高 |
|
4169 |
P1001G Oracle for f(x) = k-th element of x
|
0 / 0 |
普及+/提高 |
|
4168 |
P1001H Oracle for f(x) = parity of the number of 1s in x
|
0 / 0 |
普及+/提高 |
|
4167 |
P1001I Deutsch-Jozsa algorithm
|
0 / 0 |
提高+/省选- |
|
4166 |
P1002A1 Generate superposition of all basis states
|
0 / 0 |
普及/提高- |
|
4165 |
P1002A2 Generate superposition of zero state and a basis state
|
0 / 0 |
普及+/提高 |
|
4164 |
P1002A3 Generate superposition of two basis states
|
0 / 0 |
提高+/省选- |
|
4163 |
P1002A4 Generate W state
|
0 / 0 |
省选/NOI- |
|
4162 |
P1002B1 Distinguish zero state and W state
|
0 / 0 |
普及+/提高 |
|
4161 |
P1002B2 Distinguish GHZ state and W state
|
0 / 0 |
提高+/省选- |
|
4160 |
P1002B3 Distinguish four 2-qubit states
|
0 / 0 |
提高+/省选- |
|
4159 |
P1002B4 Distinguish four 2-qubit states - 2
|
0 / 0 |
提高+/省选- |
|
4158 |
P1002C1 Distinguish zero state and plus state with minimum error
|
0 / 0 |
提高+/省选- |
|
4157 |
P1002C2 Distinguish zero state and plus state without errors
|
0 / 0 |
省选/NOI- |
|
4156 |
P1002D1 Oracle for f(x) = b * x mod 2
|
0 / 0 |
普及+/提高 |
|
4155 |
P1002D2 Oracle for f(x) = b * x + (1 - b) * (1 - x) mod 2
|
0 / 0 |
普及+/提高 |
|
4154 |
P1002D3 Oracle for majority function
|
0 / 0 |
提高+/省选- |
|
4153 |
P1002E1 Bernstein-Vazirani algorithm
|
0 / 0 |
提高+/省选- |
|
4152 |
P1002E2 Another array reconstruction algorithm
|
0 / 0 |
省选/NOI- |
|
4151 |
P1003A Polycarp's Pockets
|
0 / 0 |
普及/提高- |
|
4150 |
P1003B Binary String Constructing
|
0 / 0 |
普及+/提高 |
|
4149 |
P1003C Intense Heat
|
0 / 0 |
普及+/提高 |
|
4148 |
P1003D Coins and Queries
|
0 / 0 |
提高+/省选- |
|
4147 |
P1003E Tree Constructing
|
0 / 0 |
NOI/NOI+/CTSC |
|
4146 |
P1003F Abbreviation
|
0 / 0 |
8 |
|
4145 |
P1004A Sonya and Hotels
|
0 / 0 |
普及/提高- |
|
4144 |
P1004B Sonya and Exhibition
|
0 / 0 |
普及+/提高 |
|
4143 |
P1004C Sonya and Robots
|
0 / 0 |
普及+/提高 |
|
4142 |
P1004D Sonya and Matrix
|
0 / 0 |
8 |
|
4141 |
P1004E Sonya and Ice Cream
|
0 / 0 |
9 |
|
4140 |
P1004F Sonya and Bitwise OR
|
0 / 0 |
10 |
|
4139 |
P1005A Tanya and Stairways
|
0 / 0 |
普及/提高- |
|
4138 |
P1005B Delete from the Left
|
0 / 0 |
普及/提高- |
|
4137 |
P1005C Summarize to the Power of Two
|
0 / 0 |
普及+/提高 |
|
4136 |
P1005D Polycarp and Div 3
|
0 / 0 |
提高+/省选- |
|
4135 |
P1005E1 Median on Segments (Permutations Edition)
|
0 / 0 |
省选/NOI- |
|
4134 |
P1005E2 Median on Segments (General Case Edition)
|
0 / 0 |
9 |
|
4133 |
P1005F Berland and the Shortest Paths
|
0 / 0 |
NOI/NOI+/CTSC |
|
4132 |
P1006A Adjacent Replacements
|
0 / 0 |
普及/提高- |
|
4131 |
P1006B Polycarp's Practice
|
0 / 0 |
普及+/提高 |